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Nambu tensors and commuting vector fields
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Department of Physics, University of Turku, FIN-20014 Turku, Finland

Received 2 August 1996

Abstract. Takhtajan has recently studied the consistency conditions for Nambu brackets
(1994 Commun. Math. Phys.160 295–315), and suggested that they have to be skew-
symmetric, and satisfy the Leibnitz rule and the fundamental identity (FI, a generalization
of the Jacobi identity). If thenth-order Nambu brackets in dimensionN are written as
{f1, . . . , fn} = ηi1...in ∂i1f1 · · · ∂infn (where theiα summations range over 1. . . N), the FI
implies two conditions on the Nambu tensorη, one algebraic and one differential. The
algebraic part of FI implies decomposability ofη and in this letter we show that the Nambu
bracket can then be written as{f1, . . . , fn} = ρ εα1...αn D̄

α1f1 · · · D̄αnfn, whereεα1...αn is the
usual totally antisymmetricn-dimensional tensor, theαi summations range over 1. . . n, and
D̄α := ∂α + ∑N

k=n+1 vα
k ∂k aren vector fields. Our main result is that the differential part of the

FI is satisfied iff the vector fields̄D commute. Examples are provided by integrable Hamiltonian
systems. It turns out that then the Nambu bracket itself guarantees that the motions stays on the
manifold defined by the constants of motion of the integrable system, while then − 1 Nambu
Hamiltonians determine the (possibly non-integrable) motion on this manifold.

1. Introduction

The standard formulation of Hamiltonian motion using Poisson brackets is by

dF

dt
= {H, F } {f, g} := ∂(f, g)

∂(p, q)
.

In 1973 Nambu proposed an intriguing generalization of this [1]; the idea was to extend the
above classical Poisson bracket formulation inR2 to R3 by generalizing the Jacobian:

dF

dt
= {H1, H2, F } {f, g, h} := ∂(f, g, h)

∂(x, y, z)
.

Note the appearance of two Hamiltonians,H1 andH2. Subsequently, Nambu’s idea has been
extended further to higher dimensions (number of free variables), to higher order (number
of functions in the bracket), and to other antisymmetric combinations than the Jacobian.

Recent interest in this topic is due to Takhtajan [2], who studied in particular the
consistency requirements one should place on such a generalization; a natural set of
properties for the bracket is as follows.

(1) Skew symmetry

{f1, . . . , fn} = (−1)ε(σ ){fσ(1), . . . , fσ(n)}
whereσ is a permutation of 1, . . . , n andε(σ ) is its parity.
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(2) The Leibnitz rule

{ab, f2, . . . , fn} = b{a, f2, . . . , fn} + a{b, f2, . . . , fn}.
(3) A generalization of the Jacobi identity, the fundamental identity (FI) (see also [3])

{{h1, . . . , hn−1, f1}, f2, . . . , fn} + {f1, {h1, . . . , hn−1, f2}, f3, . . . , fn} + · · ·
· · · + {f1, . . . , fn−1, {h1, . . . , hn−1, fn}} = {h1, . . . , hn−1, {f1, . . . , fn}}. (1)

If we write the Nambu bracket in terms of the antisymmetric Nambu tensorη [2]

{f1, . . . , fn} := ηi1...in∂i1f1 · · · ∂infn (2)

then from the FI it follows [2] that the Nambu tensorη must satisfy two conditions, one
algebraic

Ni1i2...inj1j2...jn
+ Nj1i2i3...ini1j2j3...jn

= 0 (3)

where

Ni1i2...inj1j2...jn
:= ηi1i2...inηj1j2...jn

+ ηjni1i3...inηj1j2...jn−1i2 + ηjni2i1i4...inηj1j2...jn−1i3 + · · ·
· · · + ηjni2i3...in−1i1ηj1j2...jn−1in − ηjni2i3...inηj1j2...jn−1i1 (4)

and one differential [2]

Di2...inj1...jn
:= ηki2...in ∂k ηj1j2...jn

+ ηjnki3...in ∂k ηj1j2...jn−1i2 + ηjni2ki4...in ∂k ηj1j2...jn−1i3 + · · ·
· · · + ηjni2i3...in−1k ∂k ηj1j2...jn−1in − ηj1j2...jn−1k ∂k ηjni2i3...in = 0. (5)

(In equation (5) of [2] there is a misprint in this formula (corrected in [4]): the last term of
(5) above is missing.) Note that (2) and (4) are automatically satisfied forN 6 n + 1 and
(5) for N = n.

Recently it has been shown [5] that the algebraic equations (3) and (4) imply that the
Nambu tensors are decomposable (as conjectured in [4]), which in particular means that
they can be written as determinants of the form

ηi1...in =

∣∣∣∣∣∣∣
v1

i1
. . . v1

in

...
...

vn
i1

. . . vn
in

∣∣∣∣∣∣∣ = εα1...αn
v

α1
i1

· · · vαn

i1
. (6)

In this letter, (6) is our starting point and we go on to study the consequences of differential
condition (5).

2. Commuting vector fields

If η has the form (6) it actually satisfies (3) byN = 0 and from this it follows that the
differential equation (5) is scale invariant, because for any scalarρ we have

Di2...inj1...jn
(ρη) = (ρ∂kρ) Nki2...inj1...jn

(η) + ρ2 Di2...i4j1...j2(η).

This scale invariance and the determinantal form ofη imply certain invariances with respect
to changes in thev’s and we can use them to define a standard form.

Let us define ann×N matrix V by Vαk := vα
k , the Nambu tensorηi1...in is then given by

the determinant consisting of columnsi1, . . . , in of V. The rank ofV must ben, otherwise all
η’s vanish. If necessary, let us change the numbering so that the submatrix ofV consisting
of its first n columns has non-zero determinant, and let us denote thisn × n submatrix by
V . We have detV = η12...n.
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The n × N matrix V̄ = V −1V can now be used to define another Nambu tensorη̄

and we have simplyη = detV η̄, even if the matrix entriesv have changed. Since in
the decomposable case the differential equations are scale invariant we may equally well
consider the Nambu tensorη̄. In this case we have

η̄12...n = 1 η̄α1...αn−1k = εα1...αn−1αn
v̄

αn

k v̄α
i = δα

i for i 6 n, 0 6 αk 6 n

(7)

(and, correspondingly,̄vαn

k ∝ εα1...αn−1αn
η̄α1...αn−1k). This may be considered as thestandard

form for the Nambu tensor and̄V the standard form of the defining matrix. They are quite
useful in studying the differential part of FI. Furthermore, if the tensorη is given explicitly
it may not be so easy to find an equally simpleV, but the entries̄vαn

k of the standard form
can be read off directly.

Using (6) we can write the Nambu bracket (2) as

{f1, . . . , fn} := ηi1...in∂i1f1 · · · ∂infn

= εα1...αn
Dα1f1 · · ·Dαnfn

= ρεα1...αn
D̄α1f1 · · · D̄αnfn (8)

where

Dα :=
N∑

k=1

vα
k ∂k D̄α := ∂α +

N∑
k=n+1

v̄α
k ∂k ρ = η12...n. (9)

Our main result is the following.

Theorem. The nth-order Nambu tensor in dimensionN , given by (2) and (6), solves the
differential condition (5) iff the differential operators̄D of the standard form commute.

Proof. It is clear that if the differential operators̄D commute they behave just like ordinary
partial derivatives in computing the consequences of the FI. As noted before, the overall
factor can be omitted in the decomposable case. Therefore, in this case, the Nambu tensor
behaves like the canonical one and the conditions coming from FI are satisfied.

Since the Nambu tensorη changes only by an overall factor when the defining matrix
V is multiplied by some matrixC from the left, the tensor will continue to satisfy the
differential condition (5), even though in other cases the differential operators might not
commute. However, from any given form ofD’s it is easy to go to the standard form, and
what remains to be proven is that in that form the differential operators must commute. (If
n = N the standard form is the canonical form and there is nothing to prove.)

In the standard form [̄Dα, D̄β ] = 0 is equivalent to

∂αv̄
β

l +
N∑

k=n+1

v̄α
k ∂kv̄

β

l = ∂βv̄α
l +

N∑
k=n+1

v̄
β

k ∂kv̄
α
l ∀l > n. (10)

Let us now take equation (5) for the case whenj1, . . . , jn is a permutation of 1, . . . , n, and
i2, . . . , in−1 is a permutation of ann − 2 element subset of 1, . . . , n, and in = l > n (here
we needN > n). Sinceη12...n = 1, only the last two terms in (5) survive and we obtain the
condition

ηjni2...in−1k ∂kηj1...jn−1l = ηj1...jn−1k ∂kηjni2...in−1l .

Contracting this withεjni2...in−1αεj1...jn−1β and recalling (7) yields (10). �
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In theorem 2 of [5] similar conclusions are reached but the approach of that paper is
quite different.

Example. As an example let us considern = 3, N = 4 with ηijk = εijklxl [4]. It is easy
to see that (whenx4 6= 0) in the standard form the matrixV is

V̄ =
 1 0 0 −x1/x4

0 1 0 −x2/x4

0 0 1 −x3/x4


and clearly the corresponding differential operatorsD̄α = ∂xα

− (xα/x4)∂x4 commute.
Multiplying V̄ by x4 produces one more alternative form̃η = x2

4η = x3
4η̄, and the

corresponding vector fields are nothing but angular momentum operators:D̃α = L4α =
x4∂α − xα∂4. Now we have [̃Dα, D̃β ] = Lαβ , but in this form the corresponding vector
fields do not have to commute.

We can complete the analysis of this case by changing into new variables defined by

Xα = xα X4 = 1
2(x2

1 + x2
2 + x3

2 + x2
4)

and correspondingly

∂Xα
= D̄α ∂X4 = 1

x4
∂x4.

All the derivative operators commute, and∂Xn
Xm = δn

m. In the new coordinates the bracket
reduces to the canonical Nambu bracket almost everywhere, that is wheneverx4 6= 0. In the
omitted subspace one can use some other standard form. Note that derivatives with respect
to the variableX4 do not appear in the new form of the bracket,X4 is now a constant of
motion (whose form could have seen directly from the givenη). Thus the motion defined
by this η takes place on the spherex2

1 + x2
2 + x3

2 + x2
4 = constant, and its dynamics there

is given by two Nambu Hamiltonians. The fact that the motion takes place on the surface
of a hypersphere explains the appearance of angular momentum operators in the alternative
form η̃. There are six such operators but only three are needed to move on the surface; the
choice above was to useLα4, which works on the chart wherex4 > 0 or < 0.

The above example generalizes immediately to anyN = n + 1: if we takeηi1...in =
εi1...inl(∂l m), the motion stays on the surfacem(x1, . . . , xn+1) = constant. That this is also
the most general form forN = n+1 (as least locally) can be seen as follows. ForN = n+1
any η can be written asηi1...in = εi1...inlfl , which means that in the standard form we have
operatorsD̄ = ∂xα

− fα/fN∂xN
and their commutation condition is

∂αgβ − gα ∂N gβ = ∂βgα − gβ ∂N gα (11)

wheregα = fα/fN . Now let us try to find a functionm that solves∂im = kfi, i = 1, . . . , N .
From i = N we get k = ∂Nm/fN so that we should solve∂αm = gα∂Nm for
α = 1, . . . , N − 1. The integrability condition for this set of equations is nothing but
(11). This means that at least locally we can find the required constant of motionm.
Whether this can be done globally is another matter, and brings in the usual subtleties of
chaos versus integrability.

The next generalization in this direction would be to considerN = n + 2 with ηi1...in =
εi1...inkl(∂k f )(∂l g). Clearly f and g are two conserved quantities in the corresponding
Nambu dynamics. In the standard form we get vector fieldsD̄α = ∂α − v̄α

n+2∂n+1+ v̄α
n+1∂n+2

with v̄α
k = (∂αf ∂kg − ∂kf ∂αg)/(∂n+1f ∂n+2g − ∂n+2f ∂n+1g), whose commutation can be

verified directly.
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3. Nambu tensors from integrable systems

With the above theorem the problem of constructing Nambu brackets has been reduced to
finding commuting linear differential operators (9). A rich set of examples is now provided
by integrable systems.

Let us assume that we have a Liouville integrable system in dimensionn, that is
we have a set ofn functionally independent globally defined functions in involution, i.e.
whose Poisson brackets vanish. These functions and the underlying Poisson structure define
commuting 2n-dimensional Hamiltonian vector fields ([6], section 8). With the canonical
Poisson structure the Hamiltonian vector field for a functionf is given by

F :=
n∑

i=1

(
∂f

∂pi

∂qi
− ∂f

∂qi

∂pi

)
whereqi andpi are the canonically conjugate coordinates. Thus, iffi are in involution for
i = 1 . . . n, then we can define the matrix elements ofV as

v
j

i = ∂fj

∂pi

v
j

i+n = − ∂fj

∂qi

∀1 6 i, j 6 n.

In this way we getnth-order Nambu tensors in dimensionN = 2n.

3.1. Example

Let us consider the three-dimensional Toda lattice given by the Hamiltonian

I2 := 1
2(p2

1 + p2
2 + p2

3) + eq1−q2 + eq2−q3 + eq3−q1.

This is integrable, with the other two commuting conserved quantities given by

I1 := p1 + p2 + p3 (12)

I3 := p1p2p3 − eq2−q3p1 − eq3−q1p2 − eq1−q2p3. (13)

The three commuting vector fields are now

D1
T = ∂q1 + ∂q2 + ∂q3 (14)

D2
T = p1∂q1 + p2∂q2 + p3∂q3 + (eq3−q1 − eq1−q2)∂p1 + (eq1−q2 − eq2−q3)∂p2

+(eq2−q3 − eq3−q1)∂p3 (15)

D3
T = (p2p3 − eq2−q3)∂q1 + (p1p3 − eq3−q1)∂q2 + (p1p2 − eq1−q2)∂q3

+(eq1−q2p3 − eq3−q1p2)∂p1 + (eq2−q3p1 − eq1−q2p3)∂p2

+(eq3−q1p2 − eq2−q3p1)∂p3 (16)

from which the corresponding matrixV can be read. SinceDα
T Iβ = 0 for all α, β, the

dynamics given by

ġ = {h1, h2, g}T := εα1α2α3(D
α1
T h1) (D

α2
T h2) (D

α3
T g)

has the property thaṫIα = 0, no matter what the Nambu Hamiltonianshi are.
Now recall that if ann-dimensional Hamiltonian system is Liouville integrable, then the

motion actually takes place on ann-dimensional submanifold of the original 2n-dimensional
phase space defined byIi = ci , where the constantsci are determined from the initial values.
The motion on this submanifold is still defined by the original Hamiltonian.

If the dynamics is defined by a Nambu bracket arising from an integrable system as
discussed above, the motion is again restricted to the manifold defined byIi = ci , but the
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motion on this manifold is now defined by the two additional Nambu Hamiltonians, which
we could choose as we wish.

The other method of usingn-dimensional integrable systems to define Nambu dynamics
is to use the canonical Nambu tensor of order 2n and the constants of motion as Nambu
Hamiltonians, for some examples see [7].

3.2. Example

If N = 4 integrable systems have two commuting quantities, the HamiltonianH and a
constant of motionI2, but for a third-order Nambu tensor we would need three commuting
vector fields. This is possible in some superintegrable cases, i.e. if we have one more
constant of motionI3. The third constant of motion cannot have a vanishing Poisson
bracket withI2, but the corresponding Hamiltonian vector fields could still commute. An
example is provided by the following:

H = I1 := F((p1 − p2)
2 + (q1 − q2)

2) I2 := q1 + q2 I3 := p1 + p2. (17)

Now {I2, I3} = 2, but the corresponding vector fields

D1 = F ′((p1 − p2)
2 + (q1 − q2)

2)((p1 − p2)(∂q1 − ∂q2) − (q1 − q2)(∂p1 − ∂p2))

D2 = −(∂p1 + ∂p2)

D3 = ∂q1 + ∂q2

do commute. In this case the standard form of the matrix giving theη’s is quite
simple, the first three columns form a unit matrix and the fourth column is given by
v̄1

4 = −v̄2
4 = (q1 − q2)/(p1 − p2)v̄

3
4 = 1. In the new variablesX1 = q1, X2 = q2, X3 =

p1, X4 = 1
2(q1 − q2)

2 + 1
2(p1 − p2)

2, ∂Xα
= D̄α, for α = 1, 2, 3, ∂X4 = 1/(p1 − p2)∂p2

the Nambu bracket reduces to the canonical one and the motion stays on the manifold
X4 = constant. (In [4] the same functions were used as Hamiltonians in a fourth-order
canonical Nambu bracket in dimension four.)

Another superintegrable example but with non-algebraic constants of motion is given
by [8]:

H = I1 := 1
2p2

1 + 1
2p2

2 − p2q1/q2 I2 := (q1p2 − q2p1 + q2)/p2

I3 := p1 + log(p2/q2). (18)

Again {I2, I3} = 1, but the Hamiltonian vector fields

D1 = p1∂q1 + (p2 − q1/q2)∂q2 + (p2/q2)∂p1 − (p2q1/q
2
2)∂p2

D2 = −(q2/p2)∂q1 + (q2(p1 − 1)/p2
2)∂q2 − ∂p1 + ((p1 − 1)/p2)∂p2

D3 = ∂q1 + (1/p2)∂q2 + (1/q2)∂p2

commute. In the standard form the last column ofV̄ is given by v̄1
4 = p2/(p2q2 − q1),

v̄2
4 = −p2q1/(q2(p2q2 − q1)), v̄3

4 = −p1q2/(p2q2 − q1). The Hamiltonian defines a (non-
compact) manifold on which the motion takes place, and the new variables on which the
Nambu tensor is canonical areX1 = q1, X2 = q2, X3 = p1, X4 = 1

2p2
1 + 1

2p2
2 − p2q1/q2,

with ∂Xα
= D̄α, for α = 1, 2, 3, and∂X4 = q2/(p2q2 − q1)∂p2.

4. Discussion

In this letter we have studied the differential part (5) of the fundamental identity on the
assumption that the algebraic part implies decomposability (6). A standard form (7)–(9) has
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been defined for the Nambu tensor in this case and the differential condition was related to
the commutativity of the corresponding vector fieldsD̄.

The simplest Nambu tensor of ordern is obtained in dimensionN = n and is given
by the totally antisymmetric constant tensor. The present results indicate that the dynamics
defined by a Nambu bracket of the same order but in higher dimensions is still essentially
n-dimensional.

If we define the Nambu bracket using the Hamiltonian vector field of a Liouville
integrable system, then the bracket itself guarantees that the motion stays on the
n-dimensional manifold defined by the constants of motion of the underlying integrable
system. The motion on this manifold is determined by the Nambu Hamiltonianshi , and
this motion does not have to be integrable.

One important open problem has been the quantization of the dynamics defined by a
Nambu bracket. The connection to integrable systems via commuting vector fields presented
in this letter will also hopefully bring new light to this question.

I would like to thank L Takhtajan for discussions and for comments on the manuscript.
This work was supported in part by the Academy of Finland, project 31445.
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